如图,竖直放置的足够长的光滑平行金属导轨MN、PQ,有一垂直穿过导轨平面的匀强磁场,导轨上端M与P间拉一阻值R=0.40Ω的电阻,质量为0.01Kg、电阻为r=0.30Ω的金属棒ab紧贴导轨自由下滑,其下滑距离与时间的关系如下表,导轨电阻不计。(g=10m/s2)
时间t(s) |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
下滑距离s(m) |
0 |
0.1 |
0.3 |
0.7 |
1.4 |
2.1 |
2.8 |
3.5 |
(1).当t=0.7S时,重力对金属棒做功的功率
(2)金属棒在0.7S内,电阻R上产生的热量
(3)从开始运动到0.4S的时间内,通过金属棒的电荷量
如图,一个质量为0.6kg 的小球以某一初速度从P点水平抛出,恰好从光滑圆弧ABC的A点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失)。已知圆弧的半径R=0.3m,θ="60" 0,小球到达A点时的速度 v="4" m/s。(取g ="10" m/s2)求:
(1)小球做平抛运动的初速度v0;
(2)P点与A点的水平距离和竖直高度;
(3)小球到达圆弧最高点C时对轨道的压力。
如下图a所示的平面坐标系,在整个区域内充满了匀强磁场,磁场方向垂直坐标平面,磁感应强度B随时间变化的关系如图b所示,开始时刻,磁场方向垂直纸面向内,
时刻,有一带正电的粒子(不计重力)从坐标原点O沿
轴正向进入磁场,初速度为
,已知正粒子的荷质比为
,其他有关数据见图中标示。试求:
(1)时刻,粒子的坐标;
(2)粒子从开始时刻起经多长时间到达轴;
(3)粒子是否还可以返回原点?如果可以,则经多长时间返回原点?
如图所示,倾角θ=30°,宽度L=1m的足够长的U形平行光滑金属导轨,固定在磁感强度B=1T,范围充分大的匀强磁场中,磁场方向与导轨平面垂直.用平行于导轨,功率恒为6W的牵引力F牵引一根质量m=0.2kg,电阻R=1Ω放在导轨上的金属棒ab,由静止开始沿导轨向上移动(ab始终与导轨接触良好且垂直),当ab棒移动2.8m时获得稳定速度,在此过程中,金属棒产生的热量为5.8J(不计导轨电阻及一切摩擦,取g=10m/s2),求:
(1)ab棒的稳定速度;
(2)ab棒从静止开始达到稳定速度所需时间.
一个质量m=0.1kg的正方形金属框总电阻R=0.5Ω,金属框放在表面绝缘且光滑的斜面顶端(金属框上边与AA′重合),自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边BB′平行、宽度为d的匀强磁场后滑至斜面底端(金属框下边与BB′重合),设金属框在下滑过程中的速度为v,与此对应的位移为s,那么v2―s图象如图所示,已知匀强磁场方向垂直斜面向上,g=10m/s2。
(1)根据v2―s图象所提供的信息,计算出斜面倾角θ和匀强磁场宽度d.
(2)金属框从进入磁场到穿出磁场所用的时间是多少?
(3)匀强磁场的磁感应强度多大。
在互相垂直的匀强磁场和匀强电场中固定放置一光滑的绝缘斜面,其倾角为θ,设斜面足够长,磁场的磁感应强度为B,方向垂直纸面向外,电场方向竖直向上,如图所示。一质量为m带电量为q的小球静止放在斜面的最高点A,小球对斜面的压力恰好为零。在释放小球的同时,将电场方向迅速改为竖直向下,电场强度大小不变.
(1)小球沿斜面下滑的速度v为多大时,小球对斜面的正压力再次为零?
(2)小球从释放到离开斜面一共历时多少?