游客
题文

已知X光子的能量为0.6 MeV,在康普顿散射后,波长变化了20%,求反冲电子的能量.

科目 物理   题型 计算题   难度 较易
登录免费查看答案和解析
相关试题

(1)如图1所示,固定于水平面上的金属框架abcd,处在竖直向下的匀强磁场中。金属棒MN沿框架以速度v向右做匀速运动。框架的ab与dc平行,bc与ab、dc垂直。MN与bc的长度均为l,在运动过程中MN始终与bc平行,且与框架保持良好接触。磁场的磁感应强度为B。

a. 请根据法拉第电磁感应定律,推导金属棒MN中的感应电动势E;
b. 在上述情景中,金属棒MN相当于一个电源,这时的非静电力与棒中自由电子所受洛伦兹力有关。请根据电动势的定义,推导金属棒MN中的感应电动势E。
(2)为进一步研究导线做切割磁感线运动产生感应电动势的过程,现构建如下情景: 如图2所示,在垂直于纸面向里的匀强磁场中,一内壁光滑长为l的绝缘细管MN,沿纸面以速度v向右做匀速运动。在管的N端固定一个电量为q的带正电小球(可看做质点)。某时刻将小球释放,小球将会沿管运动。已知磁感应强度大小为B,小球的重力可忽略。在小球沿管从N运动到M的过程中,求小球所受各力分别对小球做的功。

如图所示,在xoy平面内y轴与MN边界之间有沿x轴负方向的匀强电场,y轴左侧和MN边界右侧的空间有垂直纸面向里、磁感应强度大小相等的匀强磁场,MN边界与y轴平行且间距保持不变.一质量为m、电荷量为 q的粒子以速度v0从坐标原点O沿x轴负方向射入磁场,每次经过磁场的时间均为t0,粒子重力不计.

(1)求磁感应强度的大小B;
(2)粒子回到原点O,其运动路程最短时,经过的时间为t="5" t0,求电场区域的宽度d 和此时的电场强度E0
(3)若带电粒子能够回到原点0,则电场强度E应满足什么条件?

如图,在第二象限的圆形区域I存在匀强磁场,区域半径为R,磁感应强度为B,且垂直于Oxy平面向里;在第一象限的区域II和区域III内分别存在匀强磁场,磁场宽度相等,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。质量为m、带电荷量q(q>0)的粒子a于某时刻从圆形区域I最高点Q(Q和圆心A连线与y轴平行)进入区域I,其速度v=。已知a在离开圆形区域I后,从某点P进入区域II。该粒子a离开区域II时,速度方向与x轴正方向的夹角为30°;此时,另一质量和电荷量均与a相同的粒子b从P点进入区域II,其速度沿x轴正向,大小是粒子a的。不计重力和两粒子之间的相互作用力。求:

(1)区域II的宽度;
(2)当a离开区域III时,a、b两粒子的y坐标之差.

如图所示,半径为r的圆形区域内有方向垂直纸面向里的匀强磁场,圆心O1在x轴上,且OO1等于圆的半径。虚线MN平行于x轴且与圆相切,在MN的上方存在匀强电场和匀强磁场,电场强度的大小为E0,方向沿x轴的负方向,磁感应强度的大小为B0,方向垂直纸面向外。两个质量为m、电荷量为q的正粒子a、b,以相同大小的初速度从原点O射入磁场,速度的方向与x轴夹角均为30˚。两个粒子射出圆形磁场后,垂直MN进入MN上方场区中恰好都做匀速直线运动。不计粒子的重力,求:

(1)粒子初速度v的大小。
(2)圆形区域内磁场的磁感应强度B的大小。
(3)只撤去虚线MN上方的磁场B0,a、b两个粒子到达y轴的时间差△t 。

一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中,粒子与圈筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:

(1)M、N间电场强度E的大小;
(2)圆筒的半径R;
(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号