如图所示,在x-o-y坐标系中,以(r,0)为圆心、r为半径的圆形区域内存在匀强磁场,磁场的磁感应强度大小为B,方向垂直于纸面向里。在y > r的足够大的区域内,存在沿y轴负方向的匀强电场,场强大小为E。从O点以相同速率向不同方向发射质子,质子的运动轨迹均在纸面内,且质子在磁场中运动的轨迹半径也为r。已知质子的电荷量为q,质量为m,不计质子所受重力及质子间相互作用力的影响。
(1)求质子射入磁场时速度的大小;
(2)若质子沿x轴正方向射入磁场,求质子从O点进入磁
场到第二次离开磁场经历的时间;
一根长为l的丝线吊着一质量为m的带电量为q的小球静止在水平向右的匀强电场中,如图所示,丝线与竖直方向成37o角,现突然将该电场方向变为向下且大小不变,不考虑因电场的改变而带来的其他影响,(重力加速度为g),求:
(1)匀强电场的电场强度的大小;
(2)求小球经过最低点时丝线的拉力.
如图所示,定值电阻R1=3Ω,R2=1Ω,开关S闭合和断开电路中消耗的功率之比为5:4,不计灯泡电阻的变化,求:(1)灯炮的电阻值RL
(2)开关闭合和断开R1消耗的功率之比
如图所示,足够长的光滑斜面倾角θ=30°,一个带正电、电量为q的物体停在斜面底端B。现在加上一个沿斜面向上的场强为E的匀强电场,在物体运动到A点时撤销电场,那么:(1)若已知BA距离x、物体质量m,则物体回到B点时速度大小多少?
(2)若已知物体在斜面上运动总时间是加电场时间的2倍,则物体的质量m是多少?
如图所示,半径为r的绝缘细圆环的环面固定在竖直平面上,AB为水平直径的两个端点。水平向右、场强大小为E的匀强电场与环面平行。一电量为+q、质量为m的小球穿在环上(不计摩擦)。若小球经A点时,速度vA(大小未知)的方向恰与电场垂直,且圆环与小球间无力的作用。已知此小球可沿圆环作完整的圆周运动,试计算:
(1)速度vA的大小。
(2)小球运动到与A点对称的B点时,对环的作用力。
(3)小球运动经过圆周最低点时,对环的作用力。
质量m=1 kg的物体,在水平拉力F(拉力方向与物体初速度方向相同)的作用下,沿粗糙水平面运动,经过位移4 m时,拉力F停止作用,运动到位移是8 m时物体停止,运动过程中Ek-x的图线如图所示.求:(g取10 m/s2)
(1)物体的初速度多大?
(2)物体和平面间的动摩擦因数为多大?
(3)拉力F的大小?