下表是某同学在做几个实验时所列举的实验材料和实验条件等相关内容,请据表回答下列问题:
组别 |
材料 |
实验条件 |
观察内容 |
A |
豆浆 |
试剂甲 |
颜色反应 |
B |
人的口腔上皮细胞 |
健那绿染液 |
细胞结构乙 |
C |
紫色洋葱鳞片叶外表皮 |
0.3g/mL蔗糖溶液 |
质壁分离 |
D |
H2O2和过氧化氢酶 |
不同的pH |
实验因变量丙 |
E |
洋葱根尖 |
解离液、龙胆紫染液等 |
细胞中染色体的数目及形态 |
(1)A~E组实验中需要使用显微镜的是 。
(2)A组实验所用的试剂甲是 ,观察到颜色是 。
B组实验观察的细胞结构乙是 。在D组实验中,实验因变量丙是 。
(3)在C组实验中若使用0.3g/mLKNO3溶液,则实验现象是 。
(4)E组为观察植物细胞的有丝分裂实验,实验中装片制作的流程为: 。如果将常温下培养洋葱的装置移到冰箱的低温室(4℃)内再培养一段时间,然后用根尖制成装片并观察细胞中染色体数目的变化,该实验的目的是探究 。
在草原设置固定样地,研究不同程度下放牧和割草两种利用方式的地上生物量和生物多样性之间的关系,结果如图。
(1)研究小组首先选取一定大小的样方,识别并统计______。
(2)在放牧草地中,有利于______植物的生长;在割草草地中,有利于______植物的生长。随着割草强度的增加,草地的______整体呈现下降趋势,但图中______呈增加趋势。
(3 )低等、中等强度的放牧草地和割草草地比较说明,牲畜喜食______植物,导致各种植物间的______关系发生改变。
(4)放牧和割草不仅影响地上植物的生长情况,也会影响土壤小动物和微生物的数量及分 布,从而改变草原群落的______结构。
(5)放牧量和割草量的增加会导致土壤盐碱化加重,研究小组通过大量的实验发现铺枯草层能有效的治理盐碱地,其主要原因是: ________________,无机营养物质不断归还土壤,有利于植物的生长。
分析有关科学探究的资料,回答问题。
为探究植物形态学上、下端在空间的位置对扦插枝条成活是否有影响,特进行如下实验。
【实验假设】植物形态学上、下端在空间的位置对扦插枝条成活无影响。
【实验设计】方法一:插条仅正插处理(如图甲);方法二:先倒插处理(如图乙),一段时间后,再作正插处理。然后统计枝条的成活率。实验连续进行2年。
(1)通常选取一年生且带有芽 和幼叶的枝条进行扦插,其目的是_______________________。
(2)枝条成活的判断依据之一是根的生长状况,你可以记录的实验现象是________________(写出两个观察指标)。
实施实验,获得如下数据。
2008年,各取长势一致的同种植物枝条1000株试验,其中方法一的成活数量为663株,方法二的成活数量为752株。
2009年,各取长势一致的同种植物枝条2000株试验,其中方法一的成活数量为1351株,方法二的成活数量为1580株。
(3)将以上数据整理、设计一张实验数据记录表,并在表中计算出成活率。
(4)根据表中数据,你得出的结论是____________________________________________。
针对上述实验,有人增加方法三,先将枝条如图丙处理,一段时间后再将枝条正插处理,并统计成活率。
(5)你认为该处理方法的目的是_____________________________________________。
回答有关酶工程的问题。
固定化酶是从20世纪60年代迅速发展起来的一种技术。东北农业大学科研人员利用双重固定法,即采用戊二醛作交联剂(使酶相互连接),海藻酸钠作为包埋剂来固定小麦酯酶,研究固定化酶的性质,并对其最佳固定条件进行了探究。下图显示的是部分研究结果 (注:酶活力为固定化酶催化化学反应的总效率,包括酶活性和酶的数量)。
(1)酶的固定化技术的应用最主要的目的是______________________________________。
(2)从对温度变化适应性和应用范围的角度分析,甲图所示结果可以得出的结论是
__________________________________________________________________________。
(3)乙图曲线表明浓度为____________的海藻酸钠包埋效果最好,当海藻酸钠浓度较低时,酶活力较低原因可能是_________________________________________________ ______。
(4)固定化酶的活力随使用次数的增多而下降,由丙图可知,固定化酯酶一般重复使用______________次后酶活力明显下降。
(5)研究人员固定小麦酯酶不采用海藻酸钠直接包埋,而是同时用戊二醛作交联剂,这是因为_____________________________________________________________。
(6)根据介绍,科研人员所采用的固定化技术可用下图中的______ 表示。在对酶进行固定化技术处理之前,还需要对酶进行分离提纯,其基本步骤中,可用 _______________ 的方法使酶蛋白沉淀,从而层析出来。
回答有关遗传病的问题。
下图为甲种遗传病(基因为A、a)和乙种遗传病(基因为B、b)的家系图。其中一种遗传病基因位于常染色体上,另一种位于X染色体上,已知II-11不携带甲、乙致病基因。(概率用分数表示)。
(1)甲种遗传病的遗传方式为____________________。
(2)Ⅲ-13的基因型及其概率为_____________________________。
(3)由于Ⅲ-14患有两种遗传病,其兄弟Ⅲ-13在婚前进行遗传咨询,已知正常女性人群中甲、乙两种遗传病基因携带者的概率分别为1/10000和1/100。H如果是男孩则患甲病的概率是__________、患乙病的概率____________;如果是女孩则患甲病的概率是________、患乙病的概率是________________;因此建议___________ ______________。
(4)Ⅲ-18经检查发现患有血友病,假设血友病基因与上述甲或乙种遗传病基因存在着连锁的现象,两基因间的交换值为20%,II-10与II-11夫妇想再生一个健康的男孩,预测其概率为 ________。
(5)除遗传咨询以外,优生优育的措施还包括(写出一点即可)______________________。
回答有关遗传信息传递与表达的问题。
限制酶能识别特定的DNA序列,并进行剪切。现以2种不同的限制酶对一个5000bp(bp为碱基对)大小的线状DNA进行剪切,相关实验及数据如下表。
第一步水解 |
产物(bp) |
第二步水解 |
产物(bp) |
|
实验1 |
A酶切割 |
2100 |
将第一步水解产物分离后,分别用B酶切割 |
200、1900 |
1400 |
600、800 |
|||
1000 |
1000 |
|||
500 |
500 |
|||
实验2 |
B酶切割 |
2500 |
将第一步水解产物分离后,分别用A酶切割 |
1900、600 |
1300 |
800、500 |
|||
1200 |
1000、200 |
|||
实验3 |
经A酶和B酶同时切割 |
1900、1000、800、600、500、200 |
(1)由单酶剪切的片段数可知,A酶和B酶的酶切位点分别为_______个和_______个。
(2)图1是经A酶切割后获得的2100bp片段,图 2是经B酶切割后获得的2500bp片段。分别在图中标出该片段在第二步水解时,B酶和A酶的切割位点。
(3)综合实验数据的分析,在图3中绘制出实验3的酶切图谱。
外源基因需导入受体细胞才能使其蕴含的 遗传信息得到表达。图4显示一种外源基因导入受体细胞的方法。
(4)图4所示的导入方法称为_____________________。
(5)在动物基因工程中,受体细胞通常采用______________细胞。
(6)若山羊体内被转入蛋白质药物基因,该基因正常表达,从而在山羊乳汁中获得药物,这就是动物基因工程培育的__________________。
(7)若想上述山羊后代个体都能保持转基因动物的特性,可以结合___________技术繁殖获得后代。