(本小题满分12分)已知函数的图象与
轴分别相交于点
,
(
分别是与
轴正半轴同方向的单位向量),函数
.
(1)求的值;
(2)当满足
时,求函数
的最小值.
(本小题满分12分)
已知函数的最大值为3,
的图像的相邻两对称轴间的距离为2,在y轴上的截距为2.
(Ⅰ)求函数的解析式;
(Ⅱ)若m=,求f(m)+f(m+1)的值.
(本小题满分14分)已知数列为等差数列,
,且其前10项和为65,又正项数列
满足
.
⑴求数列的通项公式;
⑵比较的大小;
⑶求数列的最大项.
(本小题满分14分)已知区域的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长轴,离心率
.
⑴求圆C及椭圆C1的方程;
⑵设圆与
轴正半轴交于点D,
点为坐标原点,
中点为
,问是否存在直线
与椭圆
交于
两点,且
?若存在,求出直线
与
夹角
的正切值的取值范围;若不存在,请说明理由.
19.(本小题满分14分)如图所示,已知是直角梯形,
,
,
,
平面
.
(1) 证明:;
(2) 若是
的中点,证明:
∥平面
;
(3)若,求三棱锥
的体积.
(本小题满分13分)某县一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨、硝酸盐15吨.先库存磷酸盐10吨、硝酸盐66吨,在此基础上生产这两种混合肥料.若生产1车皮甲种肥料产生的利润为10000元;生产1车皮乙种肥料产生的利润为5000元.那么分别生产甲、乙两种肥料各多少车皮能产生最大的利润?