(本小题共12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
|
“厨余垃圾”箱 |
“可回收物”箱 |
“其他垃圾”箱 |
厨余垃圾 |
400 |
100 |
100 |
可回收物 |
30 |
240 |
30 |
其他垃圾 |
20 |
20 |
60 |
(Ⅰ)试估计厨余垃圾投放正确的概率;
(Ⅱ)试估计生活垃圾投放错误的概率;
(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中
,
。当数据
的方差
最大时,写出
的值(结论不要求证明),并求此时
的值.
(注:,其中
为数据
的平均数)
在空间四边形ABCD中,AD=BC=,E、F分别是AB、CD的中点,EF=
求异面直线AD和BC所成的角。
设函数.
(Ⅰ)当时,判断函数
的零点的个数,并且说明理由;
(Ⅱ)若对所有,都有
,求正数
的取值范围.
已知椭圆过点
,且离心率为
.
(1)求椭圆的方程;
(2)为椭圆
的左右顶点,点
是椭圆
上异于
的动点,直线
分别交直线
于
两点.证明:以线段
为直径的圆恒过
轴上的定点.
如图,在三棱柱中,
,顶点
在底面
上的射影恰为点
,且
.
(Ⅰ)证明:平面平面
;
(Ⅱ)求棱与
所成的角的大小;
(Ⅲ)若点为
的中点,并求出二面角
的平面角的余弦值.
已知等比数列的公比
,
是
和
的一个等比中项,
和
的等差中项为
,若数列
满足
(
).
(Ⅰ)求数列的通项公式;(Ⅱ)求数列
的前
项和
.