甲.乙两位同学五次数学测验成绩如下表:
测验(次) |
1 |
2 |
3 |
4 |
5 |
平均数 |
方差 |
甲(分) |
75 |
90 |
96 |
83 |
81 |
|
|
乙(分) |
86 |
70 |
90 |
95 |
84 |
|
|
请你在表中的空白处填上适当的数,用学到的统计知识对两位同学的成绩进行分析,并写出一条合理化建议.
(10分)如图,△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC.
(8分)如图,P为∠MON平分线上一点,PA⊥OM于A,PB⊥ON于B,求证:OP垂直平分AB.
(8分)如图,点C、E分别为△ABD的边BD、AB上两点,且AE=AD,CE=CD,∠D=70°,∠ECD=150°,求∠B的度数.
(8分)求如图星形中, ∠A+∠B+∠C+∠D+∠E的度数.
如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.
(1)求此抛物线的解析式;
(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.