我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:
男生序号 |
① |
② |
③ |
④ |
⑤ |
⑥ |
⑦ |
⑧ |
⑨ |
⑩ |
身高 |
163 |
171 |
173 |
159 |
161 |
174 |
164 |
166 |
169 |
164 |
根据以上表格信息,解答如下问题:
(1)计算这组数据的三个统计量:平均数、中位数和众数;
(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;
(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?
如图,△ABC中,AD为∠BAC的平分线,点F是BC的中点,BP⊥AD于D,AC=12,AB=8,求PF的长.
如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,阅读下列材料,
(1)连接AC、BD,由三角形中位线的性质定理可证四边形EFGH是________;
(2)对角线AC、BD满足条件_______时,四边形EFGH是矩形;
(3)对角线AC、BD满足条件_______时,四边形EFGH是菱形;
(4)对角线AC、BD满足条件_________时,四边形EFGH是正方形.
如图,在△ABC中,AD为角平分线,CE⊥AD,F为BC中点.
求证:EF=(AB-AC).
如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.
如图,在四边形ABCD中,E、F、G、H分别是AD、BD、BC、AC上的中点,AB=5,CD=7.求四边形EFGH的周长.