阅读下面材料:
小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA="3" ,PB=4,PC=5,求∠APB的度数.
小伟是这样思考的:如图2,利用旋转和全等的知识构造△,连接
,得到两个特殊的三角形,从而将问题解决.
请你回答:图1中∠APB的度数等于 .
参考小伟同学思考问题的方法,解决下列问题:
(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=
,则∠APB的度数等于 ,正方形的边长为 ;
(2)如图4,在正六边形ABCDEF内有一点P,且PA=,PB=1,PF=
,则∠APB的度数等于 ,正六边形的边长为 .
(年湖南张家界10分)如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连结BE交AC于点F,连结DF.
(1)证明:△CBF≌△CDF;
(2)若AC=,BD=2,求四边形ABCD的周长;
(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.
(年湖南湘潭10分)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC。
(1)求证:△BDF∽△CEF;
(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;
(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.
(年黑龙江哈尔滨10分)如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.
(1)求证:△ABC为等腰三角形;
(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.
(年黑龙江大庆9分)如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.
(1)求证:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°﹣cos72°的值.
(年贵州六盘水14分)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.
活动中测得的数据如下:
①小明的身高DC=1.5m
②小明的影长CE=1.7cm
③小明的脚到旗杆底部的距离BC=9cm
④旗杆的影长BF=7.6m
⑤从D点看A点的仰角为30°
请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据,)