如图,四边形 是边长为1的正方形,点 是射线 上的动点(点 不与点 ,点 重合),点 在线段 的延长线上,且 ,连接 ,将 绕点 顺时针旋转 得到 ,连接 , , .设 ,四边形 的面积为 ,下列图象能正确反映出 与 的函数关系的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , ,以 为直径的 交 于点 ,点 为线段 上的一点, ,连接 并延长交 的延长线于点 ,连接 交 于点 ,若 ,则 的长是
A. |
|
B. |
|
C. |
|
D. |
|
我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是 尺.根据题意,可列方程为
A. |
|
B. |
|
C. |
|
D. |
|
在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是
A. |
甲 |
B. |
乙 |
C. |
丙 |
D. |
丁 |
为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:
身高 |
|
|
|
|
人数 |
60 |
260 |
550 |
130 |
根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于 的概率是
A. |
0.32 |
B. |
0.55 |
C. |
0.68 |
D. |
0.87 |