某学生站在公园湖边的M处,测得湖心亭A位于北偏东30°方向上,又测得游船码头B位于南偏东60°方向上.现有一艘游船从湖心亭A 处沿正南方向航行返回游船码头,已知M处与AB的距离MN=0.7千米,求湖心亭与游船码头B的距离(精确到0.1千米).
如图,在平行四边形ABCD中,于E,
于F,BD与AE、AF分别相交于G、H.
(1)求证:△ABE∽△ADF;
(2)若,求证:四边形ABCD是菱形.
如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CBA与C、P、Q三点构成的三角形相似,所需要的时间是多少秒?
小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为9.6米和2米,求旗杆AB的高度.
如图,在正方形网格中,△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).
(1)以点O(0,0)为位似中心,按比例尺3:1在位似中心的同侧将△OAB放大为△OA’B’,放大后点A、B的对应点分别为A’、B’ .画出△OA’B’,并写出点A’、B’的坐标:A’(),B’().
(2)在(1)中,若为线段
上任一点,写出变化后点
的对应点
的坐标 ().
已知,如图,抛物线与
轴交于点
,与
轴交于点
,点
的坐标为
,对称轴是
.
(1)求该抛物线的解析式;
(2)点是线段
上的动点,过点
作
∥
,分别交
轴、
于点P、
,连接
.当
的面积最大时,求点
的坐标;
(3)在(2)的条件下,求的值.