如图,抛物线 与 轴交于 , 两点,与 轴交于点 ,点 与点 关于 轴对称.
(1)求点 、 、 的坐标.
(2)求直线 的解析式.
(3)在直线 下方的抛物线上是否存在一点 ,使 的面积最大?若存在,求出点 的坐标;若不存在,请说明理由.
某批彩色弹力球的质量检验结果如下表:
抽取的彩色弹力球数 |
500 |
1000 |
1500 |
2000 |
2500 |
优等品频数 |
471 |
946 |
1426 |
1898 |
2370 |
优等品频率 |
0.942 |
0.946 |
0.951 |
0.949 |
0.948 |
(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图
(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(精确到0.01)
(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率.
(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为 ,求取出了多少个黑球?
某地图书馆为了满足群众多样化阅读的需求,决定购买甲、乙两种品牌的电脑若干组建电子阅览室.经了解,甲、乙两种品牌的电脑单价分别3100元和4600元.
(1)若购买甲、乙两种品牌的电脑共50台,恰好支出200000元,求甲、乙两种品牌的电脑各购买了多少台?
(2)若购买甲、乙两种品牌的电脑共50台,每种品牌至少购买一台,且支出不超过160000元,共有几种购买方案?并说明哪种方案最省钱.
解分式方程: .
计算: .