游客
题文

如图(1)等腰直角三角形ABC中,∠ACB=90°,直线l过点C,AD⊥l,BE⊥l,垂足分别为D、E。

(1)求证:⊿ACD≌⊿CBE;
(2)若直线l绕点C逆时针旋转与AB相交(如图(2))且AD⊥l,BE⊥l,上述结论还成立吗?请说明理由。

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图所示,在平面直角坐标系中,一次函数y=kx+1,的图象与反比例函数的图象在第一象限相交于点A,过点A分别作x 轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.

已知二次函数当x=1时,y有最大值为5,且它的图象经过点(2,3),求这个函数的关系式.

成反比例,当=2时,=-1,求函数解析式和自变量的取值范围。

如图1,在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),A点坐标为(-1,0)OB=OC ,
(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.

图1图2

某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号