(本小题满分12分)某公司有男职员45名,女职员15名,按照分层抽样的方法组建了一个4人的科研攻关小组。
(1)求某职员被抽到的概率及科研攻关小组中男、女职员的人数;
(2)经过一个月的学习、讨论,这个科研攻关组决定选出两名职员做某项实验,方法是先从小组里选出1名职员做实验,该职员做完后,再从小组内剩下的职员中选一名做实验,求选出的两名职员中恰有一名女职员的概率;
(3)实验结束后,第一次做实验的职员得到的实验数据为68,70,71,72,74,第二次做实验的职员得到的实验数据为69,70,70,72,74,请问哪位职员的实验更稳定?并说明理由。
已知等差数列的公差
大于0,且
、
是方程
的两根.数列
的前
项和为
,满足
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设数列的前
项和为
,记
.若
为数列
中的最大项,求实数
的取值范围.
已知椭圆过点
,且离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)为椭圆
的左、右顶点,直线
与
轴交于点
,点
是椭圆
上异于
的动点,直线
分别交直线
于
两点.证明:
恒为定值.
如图,四棱锥的底面
是矩形,
,且侧面
是正三角形,平面
平面
,
(Ⅰ)求证:;
(Ⅱ)在棱上是否存在一点
,使得二面角
的大小为45°.若存在,试求
的值,若不存在,请说明理由.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为
,且不同种产品是否受欢迎相互独立.记
为公司向市场投放三种新型产品受欢迎的数量,其分布列为
![]() |
0 |
1 |
2 |
3 |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)求的值
(Ⅱ)求数学期望.
已知△ABC的三个内角A、B、C所对的边分别为向量
,且
.
(Ⅰ)求角A的大小;
(Ⅱ)若,试判断
取得最大值时△ABC形状.