如图所示,木板与水平地面间的夹角θ可以随意改变,当θ=30°时,可视为质点的一小木块恰好能沿着木板匀速下滑。若让该小木块从木板的底端以大小恒定的初速率v0= 10m/S的速度沿木板向上运动,随着θ的改变,小物块沿木板滑行的距离x将发生变化,重力加速度g=10m/s2。
(1) 求小物块与木板间的动摩擦因数;
(2) 当θ角满足什么条件时,小物块沿木板滑行的距离最小,并求出此最小值
如图所示,一个质量为m、电荷量为q,不计重力的带电粒子,从原点O以速度v沿y轴正方向射入第一象限内的匀强磁场中,并从x轴上的P(a,0)点射出第一象限。
(1)判断粒子的电性;
(2)求匀强磁场的磁感应强度B的大小和粒子通过第一象限的时间。
如图所示,竖直平面内有一半径为r、电阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与距离为2r、电阻不计的平行光滑金属导轨ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,设平行导轨足够长。已知导体棒下落r/2时的速度大小为v1,下落到MN处时的速度大小为v2。
(1)求导体棒ab从A处下落r/2时的加速度大小;
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II这间的距离h和R2上的电功率P2;
(3)若将磁场II的CD边界略微下移,导体棒ab进入磁场II时的速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式。
如下图甲所示,理想变压器原线圈通有正弦式交变电流,副线圈接有3个电阻和一个电容器。已知R1=R3=20Ω,R2=40Ω,原、副线圈的匝数比为10∶1,原线圈的输入功率为P=35W,已知通过R1的正弦交流电如下图乙所示。求:
(1)原线圈输入电压;
(2)电阻R2的电功率;
(3)电容器C流过的电流。
如图甲所示,一质量为m=1kg的物块静止在粗糙水平面上的A点,从t=0时刻开始,物体在受按如图乙所示规律变化的水平力F作用下向右运动,第3s末物块运动到B点时速度刚好为0,第5s末物块刚好回到A点,已知物块与粗糙水平间的动摩擦因数μ=0.2(g取10m/s2),求:
(1)AB间的距离;
(2)水平力F在5s时间内对物块的冲量。
如图甲所示,一个匝数n=100的圆形导体线圈,面积S1=0.4m2,电阻r=1Ω.在线圈中存在面积S2=0.3m2的垂直线圈平面向外的匀强磁场区域,磁感应强度B随时间t变化的关系如图乙所示.有一个R=2Ω的电阻,将其两端a、b分别与图甲中的圆形线圈相连接,求在0~4s时间内电阻R上产生的焦耳热.