为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三个年级根据初赛成绩分别选出了10名同学参加决赛(满分为100分)如表所示:
决赛成绩(单位:分)
(1)请你填写下表:
(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:
从平均数和众数相结合看(分析哪个年级成绩好些): _________;
从平均数和中位数相结合看(分析哪个年级成绩好些): ___________;
(3)如果在每个年级参加决赛的选手中分别选出三人参加决赛,你认为哪个年级的实力更强一些。说明理由:__________________________________________________________。
△ABC是锐角三角形,BC=6,面积为12,点P在AB上,点Q在AC上,如图所示, 正方形PQRS(RS与A在PQ的异侧)的边长为x,正方形PQRS与△ABC公共部分的面积为y.
(1)当RS落在BC上时,求x;
(2)当RS不落在BC上时,求y与x的函数关系式;
(3)求公共部分面积的最大值.
如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动.
(1)设运动开始后第t秒钟后,五边形APQCD的面积为Scm2,写出S与t 的函数关系式,并指出自变量t的取值范围.
(2)t为何值时,S最小?最小值是多少?
如图所示,是某市一条高速公路上的隧道口在平面直角坐标系上的示意图,隧道的截面由抛物线和长方形构成.长方形的长是16m,宽是6m.抛物线可以用y=-x2+8表示.
(1)现有一大型运货汽车,装载某大型设备后,其宽为4m,车载大型设备的顶部与路面的距离均为7m,它能否安全通过这个隧道?说明理由.
(2)如果该隧道内设双行道,那么这辆运货汽车能否安全通过?
(3)为安全起见,你认为隧道应限高多少比较适宜?为什么?
如图,△ABC中,∠B=90°,AB=6cm,BC=12cm.点P从点A开始,沿AB边向点B 以每秒1cm的速度移动;点Q从点B开始,沿着BC边向点C以每秒2cm的速度移动.如果P,Q 同时出发,问经过几秒钟△PBQ的面积最大?最大面积是多少?
如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=8,点D在BC上运动(不运动至B,C),DE∥AC,交AB于E,设BD=x,△ADE的面积为y.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)x为何值时,△ADE的面积最大?最大面积是多少?