当物体从高空下落时,所受阻力会随物体的速度增大而增大,因此经过下落一段距离后将匀速下落,这个速度称为此物体下落的收尾速度。研究发现,在相同环境条件下,球形物体的收尾速度仅与球的半径和质量有关.下表是某次研究的实验数据
小球编号 |
A |
B |
C |
D |
E |
小球的半径(×10-3m) |
0.5 |
0.5 |
1.5 |
2 |
2.5 |
小球的质量(×10-6kg) |
2 |
5 |
45 |
40 |
100 |
小球的收尾速度(m/s) |
16 |
40 |
40 |
20 |
32 |
(1)根据表中的数据,求出B球与C球在达到终极速度时所受阻力之比.
(2)根据表中的数据,归纳出球型物体所受阻力f与球的速度大小及球的半径的关系(写出有关表达式、并求出比例系数).
(3)现将C号和D号小球用轻质细线连接,若它们在下落时所受阻力与单独下落时的规律相同.让它们同时从足够高的同一高度下落,试求出它们的收尾速度;并判断它们落地的顺序.
山地滑雪是人们喜爱的一项体育运动.一滑雪坡由斜面AB和圆弧面BC组成,BC圆弧面和斜面相切于B,与水平面相切于C,如图所示,AC竖直高度差hl=9.8m,竖直台阶CD高度差为h2=5m,台阶底端与倾角为37°斜坡DE相连.运动员连同滑雪装备总质量为80kg,从A点由静止滑下通过C点后飞落到DE上(不计空气阻力和轨道的摩擦阻力,g取10m/s2,sin37°=0.6,cos37°=0.8).求:
(1)运动员到达C点的速度大小?
(2)运动员在空中飞行的时间?
甲、乙两人在长为L=84m的水池里沿直线来回游泳,甲的速率为V1=1.4m/s,乙的速率为V2=0.6m/s,他们同时分别从水池的两端出发,来回共游了t=25min时间,如果不计转向的时间,那么在这段时间内他们共相遇了几次?若他们同时从同一端出发,那么在上述时间内,他们共相遇了几次?
如图所示,声源S和观察A都沿x轴正方向运动,相对于地面的速率分别为Vs和vA,空气中声音传播的速率为vP,设Vs<vP, vA<vP,空气相对于地面没有流动.
若声源相继发出两个声信号,时间间隔为Δt,请根据发出的这两个声信号从声源传播到观察者的过程,确定观察者接收到这两个声信号的时间间隔Δt/.
已知O、A、B、C为同一直线上的四点、AB间的距离为l1,BC间的距离为l2,一物体自O点由静止出发,沿此直线做匀加速运动,依次经过A、B、C三点,已知物体通过AB段与BC段所用的时间相等。求O与A的距离.
为测定气垫导轨上滑块的加速度,滑块上安装了宽为3.0cm的遮光板(见图)。滑块在牵引力的作用下先后通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为△t1=0.29s,通过第二个光电门的时间为△t2=0.11s,遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为△t=3.57s,求滑块的加速度。