(本小题满分12分)
已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2重合,F1是椭圆的左焦点;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求
ABC重心G的轨迹方程;
(Ⅱ)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=,∠PF2F1=
,求cos
的值及
PF1F2的面积。
(本小题满分12分)已知两地的距离是120km.假设汽油的价格是6元/升,以
km/h(其中
)速度行驶时,汽车的耗油率为
L/h,司机每小时的工资是28元.那么最经济的车速是多少?如不考虑其他费用,这次行车的总费用是多少?
(本小题满分10分)已知函数的图象过原点,且
在
、
处取得极值.
(Ⅰ)求函数的单调区间及极值;
(Ⅱ)若函数与
的图象有且仅有一个公共点,求实数
的取值范围.
(本小题满分10分)已知,
, 且
(1) 求函数的解析式;
(2) 当时,
的最小值是-4 , 求此时函数
的最大值, 并求出相应的
的值.
(本小题满分10分)某港口的水深(米)是时间
(
,单位:小时)的函数,下面是每天时间与水深的关系表:
![]() |
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
![]() |
10 |
13 |
9.9 |
7 |
10 |
13 |
10.1 |
7 |
10 |
经过长期观测,可近似的看成是函数
(1)根据以上数据,求出的解析式
(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
(本小题满分8分)已知,
,当
为何值时,
(1) 与
垂直?
(2) 与
平行?平行时它们是同向还是反向?