在矩形ABCD中,点P在AD上,AB=2,AP=1,将三角板的直角顶点放在点P处,三角板的两直角边分别能与AB、BC边相交于点E、F,连接EF.
(1)如图,当点E与点B重合时,点F恰好与点C重合,求此时PC的长;
(2)将三角板从(1)中的位置开始,绕点P顺时针旋转,当点E与点A重合时停止,在这个过程中,请你观察、探究并解答:
①∠PEF的大小是否发生变化?请说明理由;
②直接写出从开始到停止,线段EF的中点所经过的路线长.
学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形 为矩形,点 、 分别在 、 上, , , , .求零件的截面面积.参考数据: , .
解不等式: .
抛物线 与 轴交于 、 两点,与 轴交于点 ,且 , .
(1)求抛物线的解析式;
(2)如图1,点 是抛物线上位于直线 上方的一点, 与 相交于点 ,当 时,求点 的坐标;
(3)如图2,点 是抛物线的顶点,将抛物线沿 方向平移,使点 落在点 处,且 ,点 是平移后所得抛物线上位于 左侧的一点, 轴交直线 于点 ,连结 .当 的值最小时,求 的长.
已知,在 中, , .
(1)如图1,已知点 在 边上, , ,连结 .试探究 与 的关系;
(2)如图2,已知点 在 下方, , ,连结 .若 , , , 交 于点 ,求 的长;
(3)如图3,已知点 在 下方,连结 、 、 .若 , , , ,求 的值.
资阳市为实现 网络全覆盖, 年拟建设 基站七千个.如图,在坡度为 的斜坡 上有一建成的基站塔 ,小芮在坡脚 测得塔顶 的仰角为 ,然后她沿坡面 行走13米到达 处,在 处测得塔顶 的仰角为 .(点 、 、 、 均在同一平面内)(参考数据: , ,
(1)求 处的竖直高度;
(2)求基站塔 的高.