(本小题满分12分)
已知抛物线:
经过椭圆
:
的两个焦点.设
,又
为
与
不在
轴上的两个交点,若
的重心(中线的交点)在抛物线
上,
(1)求和
的方程.
(2)有哪几条直线与和
都相切?(求出公切线方程)
已知x=是
的一个极值点
(Ⅰ)求的值;
(Ⅱ)求函数的单调增区间;
(Ⅲ)设,试问过点(2,5)可作多少条曲线y=g(x)的切线?为什么?
已知函数是奇函数,
是偶函数。(1)求
的值;(2)设
若
对任意
恒成立,求实数
的取值范围。
某观测站C在城A的南偏西25°的方向上,由A城出发有一条公路,走向是南偏东50°,在C处测得距C为km的公路上B处,有一人正沿公路向A城走去,走了12 km后,到达D处,此时C、D间距离为12 km,问这人还需走多少千米到达A城?
已知复数,
,
,求:(1)求
的值;(2)若
,且
,求
的值.
如图,抛物线与x轴交于A、B两点,与y轴交于点C,连接BC、AC。
(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合)。过点E作直线l平行BC,交AC于点D。设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)。