游客
题文

(本题满分14分,其中第(1)题4分,第(2)题的第、‚小题分别为4分、6分)
如图1,在△ABC中,已知AB=15,cosB=tanC=.点D为边BC上的动点(点D不与B、C重合),以D为圆心,BD为半径的⊙D交边AB于点E

(1)设BD=xAE=y,求的函数关系式,并写出函数定域义;
(2)如图2,点F为边AC上的动点,且满足BD=CF,联结DF
①当△ABC和△FDC相似时,求⊙D的半径;
② 当⊙D与以点F为圆心,FC为半径⊙F外切时,求⊙D的半径.

科目 数学   题型 解答题   难度 较难
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

计算或解下列方程:(每题4分,共16分)
(1)sin245°- cos60°+ tan60°·cos230°
(2)
(3)
(4)

某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为 且过顶点C(0,5)(长度单位:m)

(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元/m 2,求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的"脚手架"为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求点G的坐标.

如图,已知二次函数 的图象与 轴交于A、B两点.

(1)写出A、B两点的坐标(坐标用 表示)
(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式
(3)设以AB为直径的⊙M与 轴交于C、D两点,求CD的长.

如图,AB为⊙O的直径,D、T是圆上的两点,且AT平分∠BAD,过点T作AD的延长线的垂线PQ,垂足为C.

(1)求证:PQ是⊙O的切线;
(2)已知⊙O的半径为2,若过点O作OE⊥AD,垂足为E,OE= ,求弦AD的长.

如图,二次函数的图象与x轴相交于A(﹣3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.

(1)求D点坐标;
(2)求二次函数的解析式;
(3)根据图象直接写出使一次函数值小于二次函数值的x的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号