某民航飞机在大连海域失事,为调查失事原因,决定派海军潜水员打捞飞机上的黑匣子,如图所示,一潜水员在A处以每小时8海里的速度向正东方向划行,在A处测得黑匣子B在北偏东60°的方向,划行半小时后到达C处,测得黑匣子B在北偏东30 °的方向,在潜水员继续向东划行多少小时,距离黑匣子B最近,并求最近距离.
已知关于x的方程.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是3,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.
某地区一厂工业废气排放量为450万立方米,为改善该地区的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米.如果每期治理中废气减少的百分率相同.
(1)求每期减少的百分率是多少?
(2)预计第一期治理中每减少1万立方米需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元.问两期治理完成后共需投入多少万元?
如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).
(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为;
(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△△A2OB2,并求出这时点A2的坐标为;
(3)在(2)中的旋转过程中,线段OA扫过的图形的面积.
解方程
(1)(2)
(1)计算:
(2)已知,试求
的值.