列方程解应用题
某公司2013年计划在甲、乙两个电视台播放总时长为300分钟的广告,已知甲、乙两电视台的广告收费标准分别为500元/分钟和200元/分钟,该公司2013年的广告总费用计划为9万元。
(1)求:该公司2013年计划在甲、乙两个电视台播放广告的时长分别为多少分钟?
(2)如果甲、乙两个电视台播放该公司的广告,预计能给该公司分别带来0.3万元/分钟和0.2万元/分钟的收益。求:甲、乙两个电视台2013年为该公司播放广告,预计将能给该公司带来的总收益是多少万元?
解方程:
已知梯形ABCD中,AD∥BC,AD=1,BC=2,sinB=,过点C在∠BCD的内部作射线交射线BA于点E,使得∠DCE=∠B.
(1)如图1,当ABCD为等腰梯形时,求AB的长;
(2)当点E与点A重合时(如图2),求AB的长;
(3)当△BCE为直角三角形时,求AB的长.
直线y=kx-6过点A(1,-4),与x轴交于点B,与y轴交于点D,以点A为顶点的抛物线经过点B,且交y轴于点C.
(1)求抛物线的表达式;
(2)如果点P在x轴上,且△ACD与△PBC相似,求点P的坐标;
(3)如果直线l与直线y=kx-6关于直线BC对称,求直线l的表达式.
梯形ABCE中,AD∥BC,DC⊥BC,CE⊥AB于点E,点F在边CD上,且BE•CE=BC•CF.
(1)求证:AE•CF=BE•DF;
(2)若点E为AB中点,求证:AD•BC=2EC2-BC2.
如图,已知⊙0是△ABC的外接圆,半径长为5,点D、E分别是边AB和边AC是中点,AB=AC,BC=6.求∠OED的正切值.