已知函数图像上的点
处的切线方程为
.
(1)若函数在
时有极值,求
的表达式;
(2)函数在区间
上单调递增,求实数
的取值范围.
本题满分10分)
一艘轮船按照北偏西50°的方向,以15海里每小时的速度航行,一个灯塔M原来在轮船的北偏东10°方向上,经过40分钟,轮船与灯塔的距离是海里,则灯塔和轮船原来的距离为多少?
已知圆过椭圆
的两焦点,与椭圆有且仅有两个
与圆
相切 ,与椭圆
相交于
两点记
(1)求椭圆的方程
(2)求的取值范围;
(3)求的面积S的取值范围.
已知过点的动直线
与抛物线
相交于
两点,当直线
的斜率是
时,
。
(1)求抛物线的方程;(5分)
(2)设线段的中垂线在
轴上的截距为
,求
的取值范围。(7分)
已知椭圆中心在原点,一个焦点为
,且长轴长与短轴长的比是
。
(1)求椭圆的方程;(5分)
(2)是否存在斜率为的直线
,使直线
与椭圆
有公共点,且原点
与直线
的距离等于4;若存在,求出直线
的方程,若不存在,说明理由。(7分)。
(12分)已知双曲线与椭圆有相同焦点,且经过点
,
求该双曲线方程,并求出其离心率、渐近线方程,准线方程。