如图,抛物线与
轴交于点A(-1,0)、B(3,0),与
轴交于点C(0,3).
(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,点P的横坐标为m,试用含m的代数式表示点P的纵坐标;
(3)过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;
(4)若点F是第一象限抛物线上的一个动点,过点F作FQ∥AC交x轴于点Q.当点F的坐标为 时,四边形FQAC是平行四边形;当点F的坐标为 时,四边形FQAC是等腰梯形(直接写出结果,不写求解过程).
如图,在 中, ,以 为直径的 交 于点 ,过点 的直线 交 于点 ,交 的延长线于点 ,且 .
(1)求证: 是 的切线;
(2)当 , 时,求 的长.
把抛物线 先向右平移4个单位长度,再向下平移5个单位长度得到抛物线 .
(1)直接写出抛物线 的函数关系式;
(2)动点 能否在抛物线 上?请说明理由;
(3)若点 , 都在抛物线 上,且 ,比较 , 的大小,并说明理由.
5月20日九年级复学啦 为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.
学生体温频数分布表
组别 |
温度 |
频数(人数) |
甲 |
36.3 |
6 |
乙 |
36.4 |
|
丙 |
36.5 |
20 |
丁 |
36.6 |
4 |
请根据以上信息,答案下列问题:
(1)频数分布表中 ,该班学生体温的众数是 ,中位数是 ;
(2)扇形统计图中 ,丁组对应的扇形的圆心角是 度;
(3)求该班学生的平均体温(结果保留小数点后一位).
在平行四边形 中, 为 的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.
(1)如图1,在 上找出一点 ,使点 是 的中点;
(2)如图2,在 上找出一点 ,使点 是 的一个三等分点.
(1)先化简,再求值: ,其中 .
(2)解不等式组 ,并把它的解集在数轴上表示出来.