如下图,用A、B、C三类不同的元件连接两个系统N1,N2,当元件A、B、C都正常工作时系统N1正常工作,当元件A正常工作且元件B、C至少有一个正常工作时系统N2正常工作,已知元件A、B、C正常工作的概率分别为0.80,0.90,0.90,分别求系统N1,N2正常工作的概率p1,p2.
(本小题满分12分)在四边形ABCD中, BD是它的一条对角线,且,
,
.⑴若△BCD是直角三形,求
的值;⑵在⑴的条件下,求
.
(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
⑴证明PA//平面EDB;⑵证明PB⊥平面EFD;
⑶求二面角C—PB—D的大小.
已知函数
(1)求的值;
(2)已知数列,求数列
的通项公式;
(3)求证:.
已知定点A(-2,0),动点B是圆(F为圆心)上一点,线段AB的垂直平分线交BF于P.
(1)求动点P的轨迹方程;
(2)是否存在过点E(0,-4)的直线l交P点的轨迹于点R,T,且满足(O为原点).若存在,求直线l的方程;若不存在,请说明理由.
已知,直线
与函数
的图象都相切于点
.
(1)求直线的方程及
的解析式;
(2)若(其中
是
的导函数),求函数
的值域.