给出定义:若函数在D上可导,即
存在,且导函数
在D上也可导,则称
在D上存在二阶导函数,记
,若
> 0在D上恒成立,则称
在D上为凹函数,以下四个函数在
上是凹函数的是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是( )
A.f(2.5)<f(1)<f(3.5) |
B.f(2.5)>f(1)>f(3.5) |
C.f(3.5)>f(2.5)>f(1) |
D.f(1)>f(3.5)>f(2.5) |
若的图像是中心对称图形,则
( )
A.4 | B.![]() |
C.2 | D.![]() |
已知双曲线C:的离心率为2,
为期左右顶点,点P为双曲线C在第一象限的任意一点,点O为坐标原点,若
的斜率为
,则
的取值范围为( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知函数的导函数如图所示,若
为锐角三角形,则下列不等式一定成立的是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知函数,则
在
上的零点个数( )
A.1 | B.2 | C.3 | D.4 |