如图1所示,A和B是真空中两块面积很大的平行金属板、加上交变电压,在两板间产生变化的电场。已知B板电势为零,在0~T时间内,A板电势UA随时间变化的规律如图2所示,其中UA的最大值为U0,最小值为 -2U0 。在图1中,虚线MN表示与A、B板平行且等距的一个较小的面,此面到A和B的距离皆为L。在此面所在处,不断地产生电量为q、质量为m的带负电微粒,微粒随时间均匀产生出来。微粒产生后,从静止出发在电场力的作用下运动。设微粒一旦碰到金属板,就附在板上不再运动,且其电量同时消失,不影响A、B板的电压。已知在0~T时间内产生出来的微粒,最终有四分之一到达了A板,求这种微粒的比荷(q/m)。(不计微粒重力,不考虑微粒之间的相互作用)。
某原子序数为Z,质量数为A的原子核,若用mx表示该原子核的质量,mp表示质子的质量,mn表示中子的质量,c表示真空中的光速,计算核子结合成该原子核时的质量亏损Δm,释放的核能ΔE,每个核子释放的比结合能为.
如图所示,在虚线左右两侧均有磁感应强度相同的垂直纸面向外的匀强磁场和场强大小相等方向不同的匀强电场,虚线左侧电场方向水平向右,虚线右侧电场方向竖直向上。左侧电场中有一根足够长的固定绝缘细杆MN,N端位于两电场的交界线上。a、b是两个质量相同的小环(环的半径略大于杆的半径),a环带电,b环不带电,b环套在杆上的N端且处于静止,将a环套在杆上的M端由静止释放,a环先加速后匀速运动到N端,a环与b环在N端碰撞并粘在一起,随即进入右侧场区做半径为 r =" 0.10" m的匀速圆周运动,然后两环由虚线上的P点进入左侧场区。已知a环与细杆MN的动摩擦因数μ=0.20,取g =" 10" m/s2。求:P点的位置;
a环在杆上运动的最大速率。
如图,在xOy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于xOy平面的匀强磁场,y轴上离坐标原点4L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子(质量为m,电荷量为e).如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x轴上距坐标原点3L的C点离开磁场.不计重力的影响,求:磁感应强度B和电场强度E的大小和方向;
如果撤去磁场,只保留电场,电子将从D点(图中未标出)离开电场,求D点的坐标;
电子通过D点时的动能.
如图甲所示,物体A、B的质量分别是4.0kg和8.0kg,用轻弹簧相连接放在光滑的水平面上,物体B左侧与竖直墙壁相接触,另有一物体C从t=0时刻起水平向左运动,在t=5.0s时与物体A相碰,并立即与A有相同的速度一起向左运动(但未粘连)。物块C从向左至又和物体A脱离的速度—时间图像如图乙所示。求物块C的质量;
在5s到15s的时间弹簧压缩过程中具有的最大弹性势能;
在5s到15s的时间内墙壁对物体B的作用力的冲量的大小和方向;
物体A与物块C脱离后至弹簧再次恢复原长时A、B的速度分别是多少?
如图,倾角为θ的斜面固定。有n个质量都为m的相同的小木块(可视为质点)放置在斜面上。相邻两小木块间距离都为,最下端的木块距底端也是
,小木块与斜面间的动摩擦因数都为μ。在开始时刻,第一个小木块从斜面顶端以初速度v0沿斜面下滑,其余所有木块都静止,由于第一个木块的下滑将依次引起一系列的碰撞。设每次碰撞的时间极短,在每次碰撞后,发生碰撞的木块都粘在一起运动,直到最后第n个木块到达底端时,速度刚好为零。已知重力加速度为g.求:
第一次碰撞后小木块1的速度大小v;
从第一个小木块开始运动到第一次碰撞后系统损失的机械能
;
发生一系列碰撞后,直到最后第n个木块到达底端,在整个过程中,由于碰撞所损失的总机械能
总。