游客
题文

先化简,再求值: 其中不等式组的整数解.

科目 数学   题型 解答题   难度 中等
知识点: 分式函数的最值
登录免费查看答案和解析
相关试题

解方程:

【提出问题】

(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
【类比探究】
(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).
(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立”)
(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.

福鼎有着丰富的旅游资源,如闻名遐迩的海上仙都太姥山、“碧海金沙”的牛郞岗海滨景区、江南古民居之杰作——翠郊古民居、风景宜人的小白鹭海滨度假村、“海上公园”台山岛、“最美海岛”之——嵛山岛等,这些都是人们节假日休闲的好去处。旅行社为了吸引游客去海上仙都太姥山和“最美海岛”之——嵛山岛旅游,推出如下的收费标准:
①如果人数不超过25人,人均旅游费用为350元.
②如果人数超过25人,每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于290元.
某单位组织员工去福鼎太姥山和嵛山岛旅游,共支付费用8960元,请问该单位这次共有多少名员工参加旅游?

甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积 大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题:

(1)利用树状图(或列表)的方法表示游戏所有可能出现的结果;
(2)求甲、乙两人获胜的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号