我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产。他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材。如图所示,(单位:cm)
(1)列出方程(组),求出图甲中a与b的值。
(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种无盖礼品盒。
①两种裁法共产生A型板材 张,B型板材 张;
②设做成的竖式无盖礼品盒x个,横式无盖礼品盒的y个,根据题意完成表格:
礼品盒 板 材 |
竖式无盖(个) |
横式无盖(个) |
x |
y |
|
A型(张) |
4x |
3y |
B型(张) |
x |
|
③做成的竖式和横式两种无盖礼品盒总数最多是 个;此时,横式无盖礼品盒可以做 个。(在横线上直接写出答案,无需书写过程)
已知抛物线的函数解析式为
,若抛物线
经过点
求抛物线
的顶点坐标
已知实数
,请证明:
≥
,并说明
为何值时才会有
.
若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线
,设
用含有
的表达式表示出△
的面积
,并求出
的最小值及
取最小值时一次函数
的函数解析式。
(参考公式:在平面直角坐标系中,若,则
,
两点间的距离为)
如图(10)所示:等边△中,线段
为其内角平分线,过
点的直线
于
交
的延长线于
.
请你探究:
,是否成立?
请你继续探究:若△
为任意三角形,线段
为其内角平分线,请问
一定成立吗?并证明你的判断.
某楼盘一楼是车库(暂不销售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:
方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).
方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)函数解析式;
小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?
有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体的数据阐明你的看法。
如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架和
(均与水平面垂直),再将集热板安装在
上.为使集热板吸热率更高,公司规定:
与水平面夹角为
,且在水平线上的射影
为
.现已测量出屋顶斜面与水平面夹角为
,并已知
,
。如果安装工人确定支架
高为
,求支架
的高(结果精确到
)?