已知函数.(1)求曲线在点处的切线方程;(2)设,如果过点可作曲线的三条切线,证明:
如图,四棱锥P—ABCD的底面为菱形且,PA⊥底面ABCD,AB=2,PA=,E为PC的中点。 (1)求直线DE与平面PAC所成角的大小; (2)求二面角E—AD—C的余弦值。
如图,在四棱锥中,底面为直角梯形,∥,,平面⊥底面,为的中点,是棱上的点,,,. (Ⅰ)求证:平面⊥平面; (Ⅱ)若为棱的中点,求异面直线与所成角的余弦值.
直线过点P(0,2)且与椭圆相交于M,N两点,求面积的最大值。
已知抛物线与直线相交于A,B两点。 (1)求证:OA⊥OB; (2)当的面积等于时,求的值。
椭圆E:内有一点P(2,1),求经过P并且以P为中点的弦所在直线方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号