已知数列{an}的前n项和为Sn,且Sn=,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡。
(1)求an,bn;
(2)求数列{an·bn}的前n项和Tn。
下面的一组图形为某一四棱锥S-ABCD的底面与侧面。
(1)请画出四棱锥S-ABCD的示意图,是否存在一条侧棱垂直于底面?如果存在,请给出证明;如果不存在,请说明理由;
(2)若SA面ABCD,E为AB中点,求证:面
面
(3)求点D到面SEC的距离。
如图,直线:
与直线
:
之间的阴影区域(不含边界)记为
,其左半部分记为
,右半部分记为
.
(1)分别用不等式组表示和
;
(2)若区域中的动点
到
,
的距离之积等于
,求点
的轨迹
的方程;
直线和
轴,
轴分别交于点
,以线段
为边在第一象限
内作等边△,如果在第一象限内有一点
使得△
和△
的面积相等,
求的值。
已知函数
(Ⅰ)判断f(x)在上的单调性,并证明你的结论;
(Ⅱ)若集合A="{y" | y=f(x),},B=[0,1], 试判断A与B的关系;
(Ⅲ)若存在实数a、b(a<b),使得集合{y | y=f(x),a≤x≤b}=[ma,mb],求非零实数m的取值范围.
提高南洋大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当
时,车流速度
是车流密度
的一次函数.
(Ⅰ)当时,求函数
的表达式;(Ⅱ)当车流密度
为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.(精确到1辆/小时)