已知:如图10,AB和DE是直立在地面上的两根立柱,AB="5" m,某一时刻,AB在阳光下的投影BC="4" m.
(1)请你在图中画出此时DE在阳光下的投影,并简述画图步骤;
(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6 m,请你计算DE的长.
如图,已知△ABC是直角三角形,,BD⊥AC于点D,AB=
,BC=
,求BD长.
已知,求
的值.
已知:点A(2,-2)和点B(1,-4)在一次函数的图象上,
(1)求和
的值;
(2)求当x=时的函数值.
如图,抛物线(a
0)与双曲线
相交于点A,B. 已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).
(1)求实数a,b,k的值;
(2)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求所有满足△EOC∽△AOB的点E的坐标.(其中点E和点A,点C和点B分别是对应点)
在边长为10的正方形ABCD中,以AB为直径作半圆O,如图①,E是半圆上一动点,过点E作EF⊥AB,垂足为F,连结DE.
(1)当DE=10时,求证:DE与圆O相切;
(2)求DE的最长距离和最短距离;
(3)如图②,建立平面直角坐标系,当DE =10时,试求直线DE的解析式.