.
已知抛物线y=a(x﹣m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.
(1)如图1,求抛物线y=(x﹣2)2+1的伴随直线的表达式.
(2)如图2,若抛物线y=a(x﹣m)2+n(m>0)的伴随直线是y=x﹣3,伴随四边形的面积为12,求此抛物线的表达式.
(3)如图3,若抛物线y=a(x﹣m)2+n的伴随直线是y=﹣2x+b(b>0),且伴随四边形ABCD是矩形.用含b的代数式表示m、n的值.
如图,点是等边
内一点,
,
.将
绕点
按顺时针方向旋转
得
,连接
.
(1)当,
时,试判断
的形状,并说明理由.
(2)请写出是等边三角形时
、
的度数.
= 度;
=度.
(3)探究:若,则
为多少度时,
是等腰三角形?
(只要写出探究结果)= ;
已知关于的一元二次方程
.
(1)求证:方程有两个实数根;
(2)当此方程有一个根是时,求关于
的二次函数
的表达式;
(3)在(2)的条件下,若点A与点B
(
)在关于
的二次函数
的图象上,将此二次函数的图象在
上方的部分沿
翻折,图象的其它部分保持不变,得到一个新图象,当这个新图象与x轴恰好只有两个公共点时,n的取值范围是_________________________________________.
小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.
(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;
(2)求小明的综合得分是多少?
(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?
如图,在直角坐标系xoy中,点A是反比例函数y1=的图象上一点,AB⊥x轴的正半轴于点B,C是OB的中点,一次函数y2=ax+b的图象经过A、C两点,并交y轴于点D(0,-2),若S△AO D=4.
(1)求反比例函数和一次函数的表达式;
(2)观察图象,请指出在y轴的右侧,当y1>y2时x的取值范围.