游客
题文

如图,直线y=x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.

科目 数学   题型 解答题   难度 较难
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

如图,抛物线与轴交于,0)、,0)两点,且,与轴交于点,其中是方程的两个根。
(1)求抛物线的解析式;
(2)点是线段上的一个动点,过点,交于点,连接,当的面积最大时,求点的坐标;
(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。

如图,已知,以为直径,为圆心的半圆交于点,点的中点,连接于点的角平分线,且,垂足为点

(1)求证:是半圆的切线;
(2)若,求的长。

如图,抛物线与轴交于,0)、,0)两点,且,与轴交于点,其中是方程的两个根。
(1)求抛物线的解析式;
(2)点是线段上的一个动点,过点,交于点,连接,当的面积最大时,求点的坐标;
(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。

如图,已知,以为直径,为圆心的半圆交于点,点的中点,连接于点的角平分线,且,垂足为点

(1)求证:是半圆的切线;
(2)若,求的长。

我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会。现有A型、B型、C型三种汽车可供选择。已知每种型号汽车可同时装运2种土特产,且每辆车必须装满。根据下表信息,解答问题。



苦荞茶
青花椒
野生蘑菇







(吨)
A
2
2

B
4

2
C

1
6
车型
A
B
C
每辆车运费(元)
1500
1800
2000


(1)设A型汽车安排辆,B 型汽车安排辆,求之间的函数关系式。
(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案。
(3)为节约运费,应采用(2)中哪种方案?并求出最少运费。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号