如图,在Rt△ABC中,∠A=90º,AB=6cm,AC=8cm,D、E分别是边AB、AC的中点,点P从点D出发沿DE方向以1cm/s的速度运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R、交DE于G,当点Q与点C重合时,点P停止运动.设点P运动时间为ts.
(1)点D到BC的距离DH的长是 ;
(2)当四边形BQGD是菱形时,t= ,S△EGR= ;
(3)令QR=y,求y关于t的函数关系式(不要求写出自变量的取值范围);
(4)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.
先化简,再求值: ,其中 .
计算: .
定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.
(1)如图1, 是 中 的遥望角,若 ,请用含 的代数式表示 .
(2)如图2,四边形 内接于 , ,四边形 的外角平分线 交 于点 ,连结 并延长交 的延长线于点 .求证: 是 中 的遥望角.
(3)如图3,在(2)的条件下,连结 , ,若 是 的直径.
①求 的度数;
②若 , ,求 的面积.
【基础巩固】
(1)如图1,在 中, 为 上一点, .求证: .
【尝试应用】
(2)如图2,在 中, 为 上一点, 为 延长线上一点, .若 , ,求 的长.
【拓展提高】
(3)如图3,在菱形 中, 是 上一点, 是 内一点, , , , , ,求菱形 的边长.
, 两地相距200千米.早上 货车甲从 地出发将一批物资运往 地,行驶一段路程后出现故障,即刻停车与 地联系. 地收到消息后立即派货车乙从 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往 地.两辆货车离开各自出发地的路程 (千米)与时间 (小时)的函数关系如图所示.(通话等其他时间忽略不计)
(1)求货车乙在遇到货车甲前,它离开出发地的路程 关于 的函数表达式.
(2)因实际需要,要求货车乙到达 地的时间比货车甲按原来的速度正常到达 地的时间最多晚1个小时,问货车乙返回 地的速度至少为每小时多少千米?