现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;
(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.
如图1,在平面直角坐标系中有一个,点
,点
,将其沿直线AC翻折,翻折后图形为
.动点P从点O出发,沿折线
的方向以每秒2个单位的速度向B运动,同时动点Q从点B出发,在线段BO上以每秒1个单位的速度向点O运动,当其中一个点到达终点时,另一点也随之停止运动.设运动的时间为t(秒).
设
的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围;
如图2,固定
,将
绕点C逆时针旋转,旋转后得到的三角形为
,设
与AC交于点D,当
时,求线段CD的长;
如图3,在
绕点C逆时针旋转的过程中,若设
所在直线与OA所在直线的交点为E,是否存在点E使
为等腰三角形,若存在,求出点E的坐标,若不存在,请说明理由.
在“春季经贸洽谈会”上,我市某服装厂接到生产一批出口服装的订单,要求必须在12天(含12天)内保质保量完成,且当天加工的服装当天立即空运走。为了加快进度,车间采取工人轮流休息,机器满负荷运转的生产方式,生产效率得到了提高。这样每天生产的服装数量y(套)与时间x(元)的关系如下表:
时间x(天) |
1 |
2 |
3 |
4 |
… |
每天产量y(套) |
22 |
24 |
26 |
28 |
… |
由于机器损耗等原因,当每天生产的服装数达到一定量后,平均每套服装的成本会随着服装产量的增加而增大,这样平均每套服装的成本z(元)与生产时间x(天)的关系如图所示.判断每天生产的服装的数量y(套)与生产时间x(元)之间是我们学过的哪种函数关系?并验证.
已知这批外贸服装的订购价格为每套1570元,设车间每天的利润为w(元).求w(元)与x(天)之间的函数关系式,并求出哪一天该生产车间获得最高利润,最高利润是多少元?
从第6天起,该厂决定该车间每销售一套服装就捐a元给山区的留守儿童作为建图书室的基金,但必须保证每天扣除捐款后的利润随时间的增大而增大.求a的最大值,此时留守儿童共得多少元基金?
如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.求证:
平分
;
若
,求
的面积.
某校初三(20)班全班50名同学积极参与向贫困山区的留守儿童捐款献爱心活动,团支部利用两种统计图对本班捐款情况进行统计:已知该班40%的同学为团员;请求全班捐款的金额的中位数,团员同学捐款的平均数,并补全两个统计图.
现要在捐款50元60元的同学中随机各抽一名代表参加“下乡与留守儿童手拉手”活动,并且知道捐款50元的同学中有两名女团员捐款60元的同学中有一名女团员,请用树状图或列表法求出两名代表刚好为一男一女的概率.
如图,已知直线AB与x轴、y轴交于A、B两点与反比例函数的图象交于C点和D点,若OA=3,点C的横坐标为.
求反比例函数与一次函数的解析式;
求
的面积.
若一次函数的值大于反比例函数的值,求x的取值范围.