如图所示,a为测量分子速率分布的装置示意图。圆筒绕其中心匀速转动,侧面开有狭缝N,内侧贴有记录薄膜,M为正对狭缝的位置。从原子炉R中射出的银原子蒸汽穿过屏上的S缝后进入狭缝N,在圆筒转动半个周期的时间内相继到达并沉积在薄膜上。展开的薄膜如图b所示,NP、PQ间距相等。则( )
A.到达M附近的银原子速率较大 |
B.到达Q附近的银原子速率较大 |
C.位于PQ区间的分子百分率大于位于NP区间的分子百分率 |
D.位于PQ区间的分子百分率小于位于NP区间的分子百分率 |
如图甲所示,为一种调光台灯电路示意图,它通过双向可控硅电子器件(不分得电压)实现了无级调节亮度.给该台灯接220V的正弦交流电后加在灯管两端的电压如图乙所示,则此时交流电压表的示数为()
A.220 V | B.110 V | C.![]() |
D.![]() |
光滑平行金属导轨MN、PQ所在平面与水平面成θ角,M、P两端接有阻值为R的定值电阻。阻值为r的金属棒ab垂直导轨放置,其它部分电阻不计。整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向上。从t = 0时刻开始棒受到一个平行于导轨向上的外力F,由静止开始沿导轨向上运动,运动中棒始终与导轨垂直,且接触良好,通过R的感应电流随时间t变化的图象如图2所示。
下面分别给出了穿过回路abPM的磁通量、磁通量的变化率
、棒两端的电势差
和通过棒的电荷量q随时间变化的图象,其中正确的是
如图所示,边长为L的正方形金属框,匝数为n,质量为m,电阻为R,用细线把它悬挂于一个有界的匀强磁场边缘,金属框的上半部处于磁场内,下半部处于磁场外.磁场随时间变化规律为B=kt(k>0),已知细线所能承受的最大拉力为2mg,下列说法正确的是()
A.线圈的感应电动势大小为nk·![]() |
B.细绳拉力最大时,金属框受到的安培力大小为mg |
C.从t=0开始直到细线会被拉断的时间为![]() |
D.以上说法均不正确 |
如图所示的电路中,电键S闭合且电路达到稳定时,流过灯泡L1和灯泡L2的电流分别为I1和I2,在电键S切断的瞬间,为使小灯泡L2能比原来更亮一些,然后逐渐熄灭,应( )
A.必须使I2<I1 |
B.与I1、I2大小无关,但必须使线圈自感系数L足够大 |
C.自感系数L越大,切断时间越短,则I2也越大 |
D.不论自感系数L多大,电键S切断瞬间I1只能减小,不会增大 |
有一个垂直于纸面的匀强磁场,它的边界MN左侧为无场区,右侧是匀强磁场区域,如图(甲)所示,现让一个金属线框在纸平面内以垂直于MN的恒定速度从MN左侧进入匀强磁场区域,线框中的电流随时间变化的i-t图象如右图(乙)所示,则进入磁场区域的金属线框可能是下图的(