[选修4 - 5:不等式选讲](本小题满分10分)
设,实数
满足
,求证:
.
已知集合
(1)若,求
,
;
(2)若,求实数
取值的范围.
若函数,当x=2时,函数f(x)有极值
.
(1)求函数f(x)的解析式;(2)若函数f(x)=k有3个解,求实数k的取值范围。
某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率与日产量
(万件)之间大体满足关系:
(其中
为小于6的正常数)(注:次品率=次品数/生产量,如
表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的仪器可以盈利2万元,但
每生产1万件次品将亏损1万元,故
厂方希望定出合适的日产量.(1)试将生产这种仪器的元件每天的盈利额
(万元)表示为日产量
(万件)的函数;(2)当日产量为多少时,可获得最大利润?
已知是椭圆
的两个焦点,
是椭圆上的第一象限内的点,且
.(1)求
的周长;(2)求点
的坐标.
设p :指数函数在R上是减函数;q:
。若p∨q是真命题,p∧q是假命题,求
的取值范围。