据交管部门统计,高速公路超速行驶是引发交通事故的主要原因.我市某校数学课外小组的几个同学想尝试用自己所学的知识检测车速,甬台温高速公路温州—瑞安路段的限速是:每小时80千米(即最高时速不超过80千米),如图,他们将观测点设在离公路L的距离为0.1千米的P处.这时,一辆轿车由温州向瑞安匀速直线驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°.试计算AB的长度并判断此车是否超速?
解分式方程:
如图,已知一次函数y=-x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.
如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5,在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK。
(1)若∠1=70°,求∠MKN的度数;
(2)当折痕MN与对角线AC重合时,试求△MNK的面积.
(3)△MNK的面积能否小于0.5?若能,求出此时∠1的度数;若不能,试说明理由;
下表给出了代数式与
的一些对应值:
x |
… |
0 |
1 |
2 |
3 |
4 |
… |
![]() |
… |
3 |
-1 |
3 |
… |
(1)请在表内的空格中填入适当的数;
(2)设y=+bx+c,则当x取何值时,y>0?
(3)请说明经过怎样平移函数y=+bx+c的图象得到函数y=
+1的图象
“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A、B、C、D四地.如图,
其中A、B、C三地在同一直线上,D地在A地北偏东30º方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BC=CD=20m.
(1)证明三角形BCD是等边三角形;
(2)从A地跑到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°=0.65,cos15°=0.97,tan15°=0.27,≈1.4)