已知:如图,在平面直角坐标系O
中,矩形OABC的边OA在
轴的正半轴上,OC在
轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为
,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
(本小题满分8分)
如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线AF与线段ED的延长线交予点F,连接AE,EF.
(1)求证:AF=CE;
(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.
(本小题满分8分)
某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.
(1)求该校八年级学生参加社会实践活动的人数;
(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1 500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).
请你计算本次社会实践活动所需车辆的租金.
(本小题满分8分)
已知一次函数的图象与直线
平行且经过点(2,
),与
轴、
轴分别交于A,B两点.
(1)求此一次函数的解析式;
(2)过坐标原点O作OC⊥AB交AB于点C,求OC的长.
(本小题满分7分)
如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端AB离地面1.5米,求此时离地面高度.(计算结果精确到0.1米,
(本小题满分7分)解方程: