如图所示,是磁流体动力发电机的工作原理图.一个水平放置的上下、前后封闭的矩形塑料管,其宽度为a,高度为b,其内充满电阻率为ρ的水银,由涡轮机产生的压强差p使得这个流体具有恒定的流速v0.管道的前后两个侧面上各有长为L的由铜组成的面,实际流体的运动非常复杂,为简化起见作如下假设:
a.尽管流体有粘滞性,但整个横截面上的速度均匀;
b.流体的速度总是与作用在其上的合外力成正比;
c.导体的电阻:R=ρl/S,其中ρ、l和S分别为导体的电阻率、长度和横截面积;
d.流体不可压缩.
若由铜组成的前后两个侧面外部短路,一个竖直向上的匀强磁场只加在这两个铜面之间的区域,磁感强度为B(如图).
(1)写出加磁场后,两个铜面之间区域的电阻R的表达式
(2)加磁场后,假设新的稳定速度为v,写出流体所受的磁场力F与v关系式,指出F的方向
(3)写出加磁场后流体新的稳定速度v的表达式(用v0、p、L、B、ρ表示);
(4)为使速度增加到原来的值v0,涡轮机的功率必须增加,写出功率增加量的表达式(用v0、a、b、L、B和ρ表示)。
如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60º。一质量为m的带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30º角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力)。
如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m,导轨平面与水平面成θ=37°,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直.质量为0.2 kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25。
(1)求金属棒沿导轨由静止开始下滑时的加速度大小;
(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8 W,求该速度的大小;
(3)在上问中,若R=2 Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g取10 m/s2,sin37°=0.6,cos37°=0.8)
如图所示,电源的电动势是6 V,内阻是0.5 Ω,小电动机M的线圈电阻为0.5 Ω,限流电阻R0为3 Ω,若理想电压表的示数为3 V,试求:
(1)电源的功率和电源的输出功率;
(2)电动机消耗的功率和电动机输出的机械功率。
如图所示水平传送带以4m/s的速度匀速运动,传送带两端AB间距为20m,将一质量为2Kg的木块无初速地放在A端,木块与传送带的动摩擦因数为0.2,求木块由A端运动到B端所用的时间。(g=10m/s2)
如图所示,质量为0.5kg的物体在与水平面成300角的拉力F作用下,沿水平桌面向右做直线运动,经过0.5m的距离速度由0.6m/s变为0.4m/s,已知物体与桌面间的动摩擦因数μ=0.1,求作用力F的大小。(g=10m/s2)