(1)如图(1),在△ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度数.
(2)图(1)所示的图形中,有像我们常见的学习用品——圆规。我们不妨把这样图形叫做“规形图”,观察“规形图”图(2),试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由.
(3)请你直接利用以上结论,解决以下问题:
如图(3)DC平分∠ ADB, EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数.
如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形 中, , ,问四边形 是垂美四边形吗?请说明理由;
(2)性质探究:如图1,垂美四边形 的对角线 , 交于点 .猜想: 与 有什么关系?并证明你的猜想.
(3)解决问题:如图3,分别以 的直角边 和斜边 为边向外作正方形 和正方形 ,连结 , , .已知 , ,求 的长.
如图, 是 的外接圆,点 在 边上, 的平分线交 于点 ,连接 , ,过点 作 的切线与 的延长线交于点 .
(1)求证: ;
(2)求证: ;
(3)当 , 时,求线段 的长.
小明根据学习函数的经验,参照研究函数的过程与方法,对函数 的图象与性质进行探究.
因为 ,即 ,所以可以对比函数 来探究.
列表:(1)下表列出 与 的几组对应值,请写出 , 的值: , ;
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
|
|
|
|
|
1 |
2 |
4 |
|
|
|
|
|
|
|
|
|
|
2 |
3 |
|
|
|
0 |
|
|
|
描点:在平面直角坐标系中,以自变量 的取值为横坐标,以 相应的函数值为纵坐标,描出相应的点,如图所示:
(2)请把 轴左边各点和右边各点,分别用条光滑曲线顺次连接起来;
(3)观察图象并分析表格,回答下列问题:
①当 时, 随 的增大而 ;(填“增大”或“减小”
②函数 的图象是由 的图象向 平移 个单位而得到.
③函数图象关于点 中心对称.(填点的坐标)
2020年7月23日,我国首次火星探测"天问一号"探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面 处发射,当火箭到达点 时,地面 处的雷达站测得 米,仰角为 秒后,火箭直线上升到达点 处,此时地面 处的雷达站测得 处的仰角为 . , , 在同一直线上,已知 , 两处相距460米,求火箭从 到 处的平均速度.(结果精确到1米,参考数据: ,
某中学为组织学生参加庆祝中国共产党成立100周年书画展评活动,全校征集学生书画作品.王老师从全校20个班中随机抽取了 , , , 四个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.
(1)王老师采取的调查方式是 (填"普查"或"抽样调查" ,王老师所调查的4个班共征集到作品 件,并补全条形统计图;
(2)在扇形统计图中,表示 班的扇形圆心角的度数为 ;
(3)如果全校参展作品中有4件获得一等奖,其中有1件作品的作者是男生,3件作品的作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)