如图所示,一列简谐横波沿x轴正方向传播。t=0时,波传播到x轴上的质点B,在它的左边质点A位于正的最大位移处,在t=0.6s时,质点A第二次出现在负的最大位移处。求:
(1)该波的周期T
(2)该波的波速v
(3)从t=0时开始到质点E第一次到达正向最大位移经历的时间及在该段时间内质点E通过的路程。
如图所示,长为L (L=ab=dc),高为L(L=bc=ad)的矩形区域abcd内存在着匀强电场。电量为q、质量为m、初速度为
的带电粒子从a点沿ab方向进入电场,不计粒子重力。求:
(1)若粒子从c点离开电场,求电场强度的大小;
(2)若粒子从bc边某处离开电场时速度为
,求电场强度的大小。
如图所示,质量m=5.0×10-8kg的带电粒子,以初速v0=2m/s的速度从水平放置的平行金属板A、B的中央,水平飞入电场,已知金属板长0.1m,板间距离d=2×10-2m,当UAB=1000V时,带电粒子恰好沿直线穿过电场,若两极板间的电势差可调,要使粒子能从两板间飞出,UAB的变化范围是多少?(g取10m/s2)
如图所示,炽热金属丝上发射的电子(假设刚离开金属丝时的速度为0),经电压U1="4500" V加速后,以v0的速度垂直进入偏转电场,并能从偏转电场离开.偏转电场两极板间的电压U2="180" V,距离d="2" cm,板长L="8" cm.电子的质量m=0.9×10-30kg,电子的电荷量e=1.6×10-19C.求:
(1)v0的大小;
(2)电子在离开偏转电场时的纵向偏移量.
如图所示,一个质量m="30" g,带电荷量q=-1.5×10-8C的半径极小的小球,用绝缘丝线悬挂在水平方向的匀强电场中.当小球静止时,测得悬线与竖直方向成45°夹角.求:
(1)小球受到的电场力的大小和方向;
(2)该电场的电场强度的大小和方向.
如图所示,无限宽广的匀强磁场分布在xoy平面内,x轴上下方磁场均垂直xoy 平面向里,x轴上方的磁场的磁感应强度为B,x轴下方的磁场的磁感应强度为4B/3。现有一质量为m,电量为-q带负电粒子以速度v0从坐标原点O沿y方向进入上方磁场。在粒子运动过程中,与x轴交于若干点。不计粒子的重力。求:
(1)粒子在x轴上方磁场做匀速圆周运动半径r1
(2)如把x轴上方运动的半周与x轴下方运动的半周称为一周期的话,则每经过一周期,在x轴上粒子右移的平均速度。
(3)在与x轴的所有交点中,粒子两次通过同一点的坐标位置。