如甲图所示,水平光滑地面上用两颗钉子(质量忽略不计)固定停放着一辆质量为M=3kg的小车,小车的四分之一圆弧轨道是光滑的,半径为R=0.5m,在最低点B与水平轨道BC相切,视为质点的质量为m=1kg的物块从A点正上方距A点高为h=0.3m处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行恰好停在轨道末端C。
现去掉钉子(水平面依然光滑未被破坏)不固定小车,而让其左侧靠在竖直墙壁上,该物块仍从原高度处无初速下落,如乙图所示。
不考虑空气阻力和物块落入圆弧轨道时的能量损失,已知物块与水平轨道BC间的动摩擦因数为μ=0.2
求:(1)水平轨道BC长度;
(2)小车固定时物块到达圆弧轨道最低点B时对轨道的压力;
(3)小车不固定时物块再次停在小车上时距小车B点的距离;
(4)两种情况下由于摩擦系统产生的热量之比。
如图所示,BC为半径等于m竖直放置的光滑细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失,小球能平滑地冲上粗糙斜面.(g=10m/s2)求:
(1)小球从O点的正上方某处A点水平抛出的初速度v0为多少?OA的距离为多少?
(2)小球在圆管中运动时对圆管的压力是多少?
(3)小球在CD斜面上运动的最大位移是多少?
如题图所示,在半径为a的圆柱空间中(图中圆为其横截面)充满磁感应强度大小为B的均匀磁场,其方向平行于轴线远离读者.在圆柱空间中垂直轴线平面内固定放置一绝缘材料制成的边长为L=1.6a的刚性等边三角形框架ΔDEF,其中心O位于圆柱的轴线上.DE边上S点()处有一发射带电粒子的源,发射粒子的方向皆在题图中截面内且垂直于DE边向下。发射粒子的电量皆为q(>0),质量皆为m,但速度v有各种不同的数值。若这些粒子与三角形框架的碰撞无能量损失(不能与圆柱壁相碰),电量也无变化,且每一次碰撞时速度方向均垂直于被碰的边。试问:
(1)带电粒子经多长时间第一次与DE边相碰?
(2)带电粒子速度v的大小取哪些数值时可使S点发出的粒子最终又回到S点?
(3)这些粒子中,回到S点所用的最短时间是多少?
一个质量m=0.1g的小滑块,带有q=5×10-4C的电荷放置在倾角 α=30°光滑斜面上(绝缘),斜面置于B=0.5T的匀强磁场中,磁场方向垂直纸面向里,如图所示,小滑块由静止开始沿斜面滑下,其斜面足够长,小滑块滑至某一位置时,要离开斜面。(g=10m/s2)求:
(1)小滑块带何种电荷?
(2)小滑块离开斜面的瞬时速度多大?
(3)该斜面的长度至少多长?
如图所示,细绳OA的O端与质量的重物相连,A端与轻质圆环(重力不计)相连,圆环套在水平棒上可以滑动;定滑轮固定在B处,跨过定滑轮的细绳,两端分别与重物m、重物G相连,若两条细绳间的夹角
,OA与水平杆的夹角
圆环恰好没有滑动,不计滑轮大小,整个系统处于静止状态,滑动摩擦力等于最大静摩擦力.(已知
;
):
(1)圆环与棒间的动摩擦因数;
(2)重物G的质量M
如图,质量分别为mA、mB的两个弹性小球A、B静止在地面上方,B球距离地面的高度h=0.8m,A球在B球的正上方。先将B球释放,经过一段时间后再将A球释放。当A球下落t=0.3s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰好为零。已知mB=3mA,重力加速度大小g=10m/s2,忽略空气阻力及碰撞中的动能损失。求
(1)B球第一次到达地面时的速度;
(2)P点距离地面的高度。