已知数列的前
项和为
,且满足
(
),
,设
,
.
(1)求证:数列是等比数列;
(2)若≥
,
,求实数
的最小值;
(3)当时,给出一个新数列
,其中
,设这个新数列的前
项和为
,若
可以写成
(
且
)的形式,则称
为“指数型和”.问
中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
(本小题满分14分)
已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知,求证
,m=1,1,2…,n;
(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n.
对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)为0.8,要求洗完后的清洁度是0.99.有两种方案可供选择,方案甲:一次清洗;方案乙:两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为
(1≤a≤3).设用
单位质量的水初次清洗后的清洁度是
(
),用
质量的水第二次清洗后的清洁度是
,其中
是该物体初次清洗后的清洁度.
(Ⅰ)分别求出方案甲以及时方案乙的用水量,并比较哪一种方案用水量较少;
(Ⅱ)若采用方案乙,当为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论
取不同数值时对最少总用水量多少的影响.
求的值。
一个扇形的周长为
,求扇形的半径,圆心角各取何值时,此扇形的面积最大?
角的终边上的点
与
关于
轴对称
,角
的终边上的点
与
关于直线
对称,求
之值.