已知数列的前
项和为
,且满足
(
),
,设
,
.
(1)求证:数列是等比数列;
(2)若≥
,
,求实数
的最小值;
(3)当时,给出一个新数列
,其中
,设这个新数列的前
项和为
,若
可以写成
(
且
)的形式,则称
为“指数型和”.问
中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
(本小题满分13分)
给定椭圆,称圆心在原点
,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(I)求椭圆C的方程和其“准圆”方程;
(II )点P是椭圆C的“准圆”上的一个动点,过点P作直线,使得
与椭圆C都只有一个交点,且
分别交其“准圆”于点M,N .
(1)当P为“准圆”与轴正半轴的交点时,求
的方程;
(2)求证:|MN|为定值.
(本小题满分14分)
已知函数,
(I)当时,求函数
的极值;
(II)若函数在区间
上是单调增函数,求实数
的取值范围.
(本小题满分13分)
若数列满足
,
为数列
的前
项和.
(Ⅰ) 当时,求
的值;
(Ⅱ)是否存在实数,使得数列
为等比数列?若存在,求出
满足的条件;若不存在,说明理由.
(本小题满分14分)
在斜三棱柱中,侧面
平面
,
.
(I)求证:;
(II)若M,N是棱BC上的两个三等分点,
求证:平面
.
(本小题满分13分)
某园林局对1000株树木的生长情况进行调查,其中槐树600株,银杏树400株. 现用分层抽样方法从这1000株树木中随机抽取100株,其中银杏树树干周长(单位:cm)的抽查结果如下表:
树干周长(单位:cm) |
![]() |
![]() |
![]() |
![]() |
株数 |
4 |
18 |
![]() |
6 |
(I)求的值 ;
(II)若已知树干周长在30cm至40cm之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.