某数学兴趣小组在本校九年级学生中以“你最喜欢的一项体育运动”为主题进行了抽样调查,并将调查结果绘制成如图图表:
项目 |
篮球 |
乒乓球 |
羽毛球 |
跳绳 |
其他 |
人数 |
a |
12 |
10 |
5 |
8 |
请根据图表中的信息完成下列各题:
(1)本次共调查学生 名;
(2)a= ,表格中五个数据的中位数是 ;
(3)在扇形图中,“跳绳”对应的扇形圆心角是 °;
(4)如果该年级有450名学生,那么据此估计大约有 人最喜欢“乒乓球”.
为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).
根据上述信息,解答下列各题:
(1)该班级女生人数是__,女生收看“两会”新闻次数的中位数是__;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,根据你所学过的统计知识,选择有关统计量,来比较该班级男、女生收看“两会”新闻次数的波动大小.
在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复。下表是活动进行中的一组统计数据:
摸球的次数n |
100 |
150 |
200 |
500 |
800 |
1000 |
摸到白球的次数m |
58 |
96 |
116 |
295 |
484 |
601 |
摸到白球的频率![]() |
0.58 |
0.64 |
0.58 |
0.59 |
0.605 |
0.601 |
请估计:当n很大时,摸到白球的频率将会接近_________;
假如你去摸一次,你摸到白球的概率是________;摸到黑球的概率是_____;
试估计口袋中黑、白两种颜色的球各有多少个?
解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了。这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法。
如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.
(1)求证:CE=CF;
(2)点C运动到什么位置时,四边形CEDF成为正方形?请说明理由.
⑴ 解方程:=
-3⑵ 解不等式组:
计算:(1)(-3)2-+(-1)0+
(2)