游客
题文

某校组织学生书法比赛,对参赛作品按ABCD四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:

根据上述信息完成下列问题:
(1)在这次抽样调查中,共抽查了多少名学生?
(2)请在图②中把条形统计图补充完整;
(3)求出扇形统计图中“D级”部分所对应的扇形圆心角的大小;
(4)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?

科目 数学   题型 解答题   难度 中等
知识点: 统计量的选择
登录免费查看答案和解析
相关试题

.如图,在平面直角坐标系中,点的坐标为,点轴的正半轴上,为△的中线,过两点的抛物线轴相交于两点(的左侧).

(1)求抛物线的解析式;
(2)等边△的顶点在线段上,求的长;
(3)点为△内的一个动点,设,请直接写出的最小值,以及取得最小值时,线段的长.

.如图,已知抛物线经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点轴正半轴上,连结

(1)求该抛物线的解析式;
(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?
(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长.

.如图,已知抛物线与轴交于点,与轴交于点

(1)求抛物线的解析式及其顶点的坐标;
(2)设直线轴于点.在线段的垂直平分线上是否存在点,使得点到直线的距离等于点到原点的距离?如果存在,求出点的坐标;如果不存在,请说明理由;
(3)过点轴的垂线,交直线于点,将抛物线沿其对称轴平移,使抛物线与线段总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

.如图1,已知直线y=2x(即直线l1)和直线y=—x+4(即直线l2),l2与x轴相交于点A.点P从原点O出发,向x轴的正方向作匀速运动,速度为每秒1个单位,同时点Q从A点出发,向x轴的负方向作匀速运动,速度为每秒2个单位.设运动了t秒.

(1)求这时点P、Q的坐标(用t表示).
(2)过点P、Q分别作x轴的垂线,与l1、l2分别相交于点O1、O2(如图1).
以O1为圆心、O1P为半径的圆与以O2为圆心、O2Q为半径的圆能否相切若能,求出t值;若不能,说明理由.

.如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,EBC上一点,以AE为边在直线MN的上方作正方形AEFG

(1)连接GD,求证:△ADG≌△ABE
(2)连接FC,观察并猜测∠FCN的度数代数式表示tanFCN的值;若∠FCN的大小发生改变,请举例说明,并说明理由;
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCDAB=aBC=bab为常数),E是线段BC上一动点(不含端点BC),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点EBC运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含ab的代数式表示tanFCN的值;若∠FCN的大小发生改变,请举例说明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号