某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:
根据上述信息完成下列问题:
(1)在这次抽样调查中,共抽查了多少名学生?
(2)请在图②中把条形统计图补充完整;
(3)求出扇形统计图中“D级”部分所对应的扇形圆心角的大小;
(4)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?
如图,已知抛物线C1:的顶点为P, 与x轴相交于A、B两点(点A在点B的左侧),点B 的横坐标是1.
(1)求a的值;
(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物 线C2向右平移,平移后的抛物线记为C3,抛物线
C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.
某商场将进价为2000元的冰箱以2400元出售,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的数量是y台,请写出y与x之间的函数关系式;(不要求写自变量的取值范围)
(2)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是z元,请写出z与x之间的函数关系式;(不要求写自变量的取值范围)
(3)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
如图,海上有一个小岛P,它的周围12海里有暗礁,渔船由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东行驶,有没有触礁的危险,通过计算说明。
已知:抛物线的图象经过原点,且开口向上. 确定m的值;
求此抛物线的顶点坐标;
当x取什么值时,y随x的增大而增大?
当x取什么值时,y<0?
已知二次函数y= x2 +4x+3.
(1)用配方法将y= x2 +4x+3化成y=a (x-h) 2 +k的形式;
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)写出当x为何值时,y>0.