一个盒子装有6张卡片,上面分别写着如下6个定义域为R的函数:,
,
,
,
,
.
(1)现从盒子中任取两张卡片,将卡片上的函数相加得到一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.
(本小题满分10分)从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:
甲 |
8 |
9 |
7 |
9 |
7 |
6 |
10 |
10 |
8 |
6 |
乙 |
10 |
9 |
8 |
6 |
8 |
7 |
9 |
7 |
8 |
8 |
(1)计算甲、乙两人射箭命中环数的平均数和标准差;
(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
(本小题满分10分)经过点P(3,2)的一条动直线分别交x轴、y轴于点A、B,M是线段AB的中点,连结OM并延长至点N,使|ON|=2|OM|,求点N的轨迹方程.
已知函数是定义在
上的偶函数,当
时,
。
(1)求的函数解析式,并用分段函数的形式给出;
(2)作出函数的简图;
(3)写出函数的单调区间及最值.
(本题16分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:(其中x是仪器的月产量).
(1)将利润表示为月产量的函数f(x);
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)
(本大题满分14分)已知二次函数满足
.
(Ⅰ)求的解析式;
(Ⅱ)若在
上有最小值
,最大值
,求a的取值范围.