煤燃烧时产生的热量可以用于发电。光明电厂1月份用含热量为7500大卡/千克的A种煤发电(“大卡/千克”为一种热值单位),2月份改用B种煤发电,A种煤每千克的含热量比B种煤多25%,3月份又改用比较环保的含热量为5000大卡/千克的混合煤发电,这里所说的混合煤是在B种煤中加入含热量为1000大卡/千克的C种煤形成的,这样3月份每发1度电所需B种煤比2月份少0.02千克。1月、2月和3月每发1度电所需要的总热量相同。
(1)求B种煤每千克的含热量;
(2)求该电厂3月份每发1度电所需的B种煤和C种煤各多少千克?
(3)若B种煤的成本为每吨800元,C种煤的成本为每吨200元,若该电厂四月份仍用混合煤发电,且每发一度电所需要的总热量与三月份相同,但要求所消耗的C种煤的数量不低于0.12千克,不超过0.15千克。试求:光明电厂四月份每发一度电所需的燃料成本最少是多少元?最多是多少元?
已知:如图,、
、
、
四点在一直线上,
,
∥
,且
.
求证:(1)≌
;(2)
.
某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:
甲 |
95 |
82 |
88 |
81 |
93 |
79 |
84 |
78 |
乙 |
83 |
92 |
80 |
95 |
90 |
80 |
85 |
75 |
(1)请你计算这两组数据的平均数、中位数;
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.
解方程:.
解方程
(本题满分12分) 如图,在平面直角坐标系中,抛物线与x轴交于点A、B
(点A在点B的左侧),与y轴交于点C(0,4),顶点为(1,).
(1)求抛物线的函数解析式;
(2)抛物线的对称轴与x轴交于点D,点P在对称轴上且使△CDP为等腰三角形.请直接写出满足条件的所有点的坐标P;
(3)若点E是线段AB上的一个动点(与点A、B不重合),连接AC、BC,过点E作EF∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,请求出S的最大值及此时点E的坐标;若不存在,请说明理由.